Native ion mobility-mass spectrometry reveals the binding mechanisms of anti-amyloid therapeutic antibodies.

Protein science : a publication of the Protein Society(2024)

引用 0|浏览0
暂无评分
摘要
One of the most important attributes of anti-amyloid antibodies is their selective binding to oligomeric and amyloid aggregates. However, current methods of examining the binding specificities of anti-amyloid β (Aβ) antibodies have limited ability to differentiate between complexes that form between antibodies and monomeric or oligomeric Aβ species during the dynamic Aβ aggregation process. Here, we present a high-resolution native ion-mobility mass spectrometry (nIM-MS) method to investigate complexes formed between a variety of Aβ oligomers and three Aβ-specific IgGs, namely two antibodies with relatively high conformational specificity (aducanumab and A34) and one antibody with low conformational specificity (crenezumab). We found that crenezumab primarily binds Aβ monomers, while aducanumab preferentially binds Aβ monomers and dimers and A34 preferentially binds Aβ dimers, trimers, and tetrameters. Through collision induced unfolding (CIU) analysis, our data indicate that antibody stability is increased upon Aβ binding and, surprisingly, this stabilization involves the Fc region. Together, we conclude that nIM-MS and CIU enable the identification of Aβ antibody binding stoichiometries and provide important details regarding antibody binding mechanisms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要