Reduced graphene oxide supported polyaniline/copper (II) oxide nanostructures for enhanced photocatalytic degradation of Congo red and hydrogen production from water

JOURNAL OF WATER PROCESS ENGINEERING(2024)

引用 0|浏览2
暂无评分
摘要
Industries release numerous toxic and carcinogenic organic compounds into natural water reservoirs which poses worldwide threat to both aquatic life and human beings. In this study, ternary nanocomposites comprising CuO nanoparticles, reduced graphene oxide (rGO), and polyaniline (Pani) were prepared by hydrothermal methodology. The Pani@rGO/CuO composites demonstrated a significant degradation efficiency up to 91.67 % for Congo red dye (CR) under optimized conditions of dosage and concentration. Notably, the reaction rate constant (k) of Pani@rGO/CuO for CR dye was 3.27 times greater than that of pure CuO. Additionally, the hydrogen production capability of Pani@rGO/CuO was evaluated, and it exhibited the highest performance of 16.7 mmol h-1 g-1. The integration of rGO and Pani with CuO enhanced CR dye degradation and hydrogen production by providing additional adsorption sites. Furthermore, the hybridization of CuO with rGO and Pani increased the functionality and binding sites for interaction with CR dye thereby resulting in improved adsorption efficiency. The concentration of CR and the catalyst dosage also influenced the degradation process. Hence, the response surface methodology was utilized to create 13 sets of randomized experiments by altering the catalyst dosage and degradation time to predict the degradation of CR dye.
更多
查看译文
关键词
Wastewater treatment,Photocatalytic hydrogen production,Green energy,Nanocomposites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要