Impact of HO2/RO2 ratio on highly oxygenated -pinene photooxidation products and secondary organic aerosol formation potential

ATMOSPHERIC CHEMISTRY AND PHYSICS(2024)

引用 0|浏览7
暂无评分
摘要
Highly oxygenated molecules (HOMs) from the atmospheric oxidation of biogenic volatile organic compounds are important contributors to secondary organic aerosol (SOA). Organic peroxy radicals (RO2) and hydroperoxy radicals (HO2) are key species influencing the HOM product distribution. In laboratory studies, experimental requirements often result in overemphasis on RO2 cross-reactions compared to reactions of RO2 with HO2. We analyzed the photochemical formation of HOMs from alpha-pinene and their potential to contribute to SOA formation under high (approximate to 1/1) and low (approximate to 1/100) conditions. As > 1 is prevalent in the daytime atmosphere, sufficiently high is crucial to mimic atmospheric conditions and to prevent biases by low on the HOM product distribution and thus SOA yield. Experiments were performed under steady-state conditions in the new, continuously stirred tank reactor SAPHIR-STAR at Forschungszentrum J & uuml;lich. The ratio was increased by adding CO while keeping the OH concentration constant. We determined the HOM's SOA formation potential, considering its fraction remaining in the gas phase after seeding with (NH4)(2)SO4 aerosol. An increase in led to a reduction in SOA formation potential, with the main driver being a similar to 60 % reduction in HOM-accretion products. We also observed a shift in HOM-monomer functionalization from carbonyl to hydroperoxide groups. We determined a reduction of the HOM's SOA formation potential by similar to 30 % at approximate to 1/1 compared to approximate to 1/100. Particle-phase observations measured a similar decrease in SOA mass and yield. Our study shows that too low ratios compared to the atmosphere can lead to an overestimation of SOA yields.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要