Ultrathin High-Entropy Fe-Based Spinel Oxide Nanosheets with Metalloid Band Structures for Efficient Nitrate Reduction toward Ammonia

Shuai Qi,Zhihao Lei,Qihua Huo, Jinwen Zhao, Tianchi Huang, Na Meng, Jinlian Liao,Jiabao Yi, Chunyan Shang, Xue Zhang,Hengpan Yang,Qi Hu,Chuanxin He

ADVANCED MATERIALS(2024)

引用 0|浏览0
暂无评分
摘要
Spinel oxides with tunable chemical compositions have emerged as versatile electrocatalysts, however their performance is greatly limited by small surface area and low electron conductivity. Here, ultrathin high-entropy Fe-based spinel oxides nanosheets are rationally designed (i.e., (Co0.2Ni0.2Zn0.2Mg0.2Cu0.2)Fe2O4; denotes A5Fe2O4) in thickness of approximate to 4.3 nm with large surface area and highly exposed active sites via a modified sol-gel method. Theoretic and experimental results confirm that the bandgap of A5Fe2O4 nanosheets is significantly smaller than that of ordinary Fe-based spinel oxides, realizing the transformation of binary spinel oxide from semiconductors to metalloids. As a result, such A5Fe2O4 nanosheets manifest excellent performance for the nitrate reduction reaction (NO3-RR) to ammonia (NH3), with a NH3 yield rate of approximate to 2.1 mmol h-1 cm-2 at -0.5 V versus Reversible hydrogen electrode, outperforming other spinel-based electrocatalysts. Systematic mechanism investigations reveal that the NO3-RR is mainly occurred on Fe sites, and introducing high-entropy compositions in tetrahedral sites regulates the adsorption strength of N and O-related intermediates on Fe for boosting the NO3-RR. The above findings offer a high-entropy platform to regulate the bandgap and enhance the electrocatalytic performance of spinel oxides. A modified sol-gel method has developed to synthesize ultrathin high-entropy Fe-based spinel oxide (denotes A5Fe2O4) nanosheets. Theoretic and experimental results confirm that the high-Entropy A5Fe2O4 nanosheets have metalloid band structures with remarkedly enhanced performance for the electrochemical nitrate reduction toward ammonia. image
更多
查看译文
关键词
bandgap,electron conductivity,high-entropy nanomaterials,nitrate reduction reaction,spinel oxides-based electrocatalysts
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要