Drug repurposing for diabetes mellitus: In silico and in vitro investigation of DrugBank database for α-glucosidase inhibitors

International Journal of Biological Macromolecules(2024)

引用 0|浏览0
暂无评分
摘要
The process of developing novel compounds/drugs is arduous, time-intensive, and financially burdensome, characterized by a notably low success rate and relatively high attrition rates. To alleviate these challenges, compound/drug repositioning strategies are employed to predict potential therapeutic effects for DrugBank-approved compounds across various diseases. In this study, we devised a computational and enzyme inhibitory mechanistic approach to identify promising compounds from the pool of DrugBank-approved substances targeting Diabetes Mellitus (DM). Molecular docking analyses were employed to validate the binding interaction patterns and conformations of the screened compounds within the active site of α-glucosidase. Notably, Asp352 and Glu277 participated in interactions within the α-glucosidase-ligand complexes, mediated by conventional hydrogen bonding and van der Waals forces, respectively. The stability of the docked complexes (α-glucosidase-compounds) was scrutinized through Molecular Dynamics (MD) simulations. Subsequent in vitro analyses assessed the therapeutic potential of the repositioned compounds against α-glucosidase. Kinetic studies revealed that “Forodesine” exhibited a lower IC50 (0.24 ± 0.04 mM) compared to the control, and its inhibitory pattern corresponds to that of competitive inhibitors. In-depth in silico secondary structure content analysis detailed the interactions between Forodesine and α-glucosidase, unveiling significant alterations in enzyme conformation upon binding, impacting its catalytic activity. Overall, our findings underscore the potential of Forodesine as a promising candidate for DM treatment through α-glucosidase inhibition. Further validation through in vitro and in vivo studies is imperative to confirm the therapeutic benefits of Forodesine in conformational diseases such as DM.
更多
查看译文
关键词
Diabetes mellitus,Drug repurposing,α-Glucosidase,Enzyme kinetics,Molecular docking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要