Relativistic Dips in Entangling Power of Gravity

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
The salient feature of both classical and quantum gravity is its universal and attractive character. However, less is known about the behaviour and build-up of quantum correlations when quantum systems interact via graviton exchange. In this work, we show that quantum correlations can remain strongly suppressed for certain choices of parameters even when considering two adjacent quantum systems in delocalized states. Using the framework of linearized quantum gravity with post-Newtonian contributions, we find that there are special values of delocalization where gravitationally induced entanglement drops to negligible values, albeit non-vanishing. We find a pronounced cancellation point far from the Planck scale, where the system tends towards classicalization. In addition, we show that quantum correlations begin to reemerge for large and tiny delocalizations due to Heisenberg's uncertainty principle and the universal coupling of gravity to the energy-momentum tensor, forming a valley of gravitational entanglement.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要