Brain Delivery of Protein Therapeutics by Cell Matrix-inspired Biomimetic Nanocarrier.

Advanced materials (Deerfield Beach, Fla.)(2024)

引用 0|浏览2
暂无评分
摘要
Protein therapeutics are anticipated to offer significant treatment options for central nervous system (CNS) diseases. However, the majority of proteins are unable to traverse the blood-brain barrier (BBB) and reach their CNS target sites. Inspired by the natural environment of active proteins, we used the cell matrix components hyaluronic acid (HA) and protamine (PRTM) to self-assemble with proteins to form a protein-loaded biomimetic core and then incorporated it into ApoE3-reconstituted high-density lipoprotein (rHDL) to form a protein-loaded biomimetic nanocarrier (Protein-HA-PRTM-rHDL). This cell matrix-inspired biomimetic nanocarrier facilitated the penetration of protein therapeutics across the BBB and enabled their access to intracellular target sites. Specifically, CAT-HA-PRTM-rHDL facilitated rapid intracellular delivery and release of CAT via macropinocytosis-activated membrane fusion, resulting in improved spatial learning and memory in traumatic brain injury (TBI) model mice (significantly reduced the latency of TBI mice and doubled the number of crossing platforms), and enhanced motor function and prolonged survival in amyotrophic lateral sclerosis (ALS) model mice (extended the median survival of ALS mice by more than 10 days). Collectively, this cell matrix-inspired nanoplatform enables the efficient CNS delivery of protein therapeutics and provides a novel approach for the treatment of CNS diseases. This article is protected by copyright. All rights reserved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要