Bimetallic Metal Sites in Metal-Organic Frameworks Facilitate the Production of 1-Butene from Electrosynthesized Ethylene.

Journal of the American Chemical Society(2024)

引用 0|浏览2
暂无评分
摘要
Converting CO2 to synthetic hydrocarbon fuels is of increasing interest. In light of progress in electrified CO2 to ethylene, we explored routes to dimerize to 1-butene, an olefin that can serve as a building block to ethylene longer-chain alkanes. With goal of selective and active dimerization, we investigate a series of metal-organic frameworks having bimetallic catalytic sites. We find that the tunable pore structure enables optimization of selectivity and that periodic pore channels enhance activity. In a tandem system for the conversion of CO2 to 1-C4H8, wherein the outlet cathodic gas from a CO2-to-C2H4 electrolyzer is fed directly (via a dehumidification stage) into the C2H4 dimerizer, we study the highest-performing MOF found herein: M' = Ru and M″ = Ni in the bimetallic two-dimensional M'2(OAc)4M″(CN)4 MOF. We report a 1-C4H8 production rate of 1.3 mol gcat-1 h-1 and a C2H4 conversion of 97%. From these experimental data, we project an estimated cradle-to-gate carbon intensity of -2.1 kg-CO2e/kg-1-C4H8 when CO2 is supplied from direct air capture and when the required energy is supplied by electricity having the carbon intensity of wind.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要