Two-layer consensus based on master-slave consortium chain data sharing for Internet of Vehicles

Feng Zhao, Benchang Yang,Chunhai Li,Chuan Zhang,Liehuang Zhu, Guoling Liang

IEEE Transactions on Vehicular Technology(2024)

引用 0|浏览7
暂无评分
摘要
Due to insufficient scalability, the existing consortium chain cannot meet the requirements of low latency, high throughput, and high security when applied to Internet of Vehicles (IoV) data sharing. Therefore, we propose a two-layer consensus algorithm based on the master-slave consortium chain - Weighted Raft and Byzantine Fault Tolerance (WRBFT). The intra-group consensus of the WRBFT algorithm adopts weighted Raft, and the best node is selected as the master node to lead the intra-group consensus by comprehensively evaluating the signal-to-noise ratio (SNR), data processing capacity and storage capacity of the nodes. The inter-group consensus adopts practical Byzantine fault tolerance (PBFT) based on BLS aggregate signature with nonlinear coefficients to ensure that the inter-group consensus can tolerate 1/3 of Byzantine nodes. At the same time, the verifiable random function (VRF) is used to select the master node of the inter-group consensus to ensure the randomness of the master node. A large number of experimental results show that the proposed WRBFT algorithm reduces delay, and improves throughput and system security.
更多
查看译文
关键词
consortium chain,signal-to-noise ratio (SNR),BLS aggregate signature,verifiable random function (VRF)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要