Magnetoelectric microelectromechanical and nanoelectromechanical systems for the IoT

Nature Reviews Electrical Engineering(2024)

引用 0|浏览5
暂无评分
摘要
The internet of things (IoT) has revolutionized society by creating a network of interconnected devices with sensors, processing ability and software for data exchange. However, the expansion of IoT places undue strain on energy resources. Thus, the development of low-power components is critical. Moreover, the demand for IoT has opened new markets for wearable technologies, necessitating innovations towards miniaturization. This rapid growth introduces further challenges in communication and environmental adaptability. Magnetoelectric (ME) microelectromechanical and nanoelectromechanical systems (M/NEMS) introduce unparalleled properties to reshape the IoT landscape. ME M/NEMS enable a 100,000× reduction in wavelength, resulting in reduced size and weight, and provide multifunctionality, such as simultaneous sensing, data transmission and wireless power transfer. With renewed interest in ME M/NEMS platforms, several disruptive technologies have emerged ranging from ultra-compact radiofrequency front-ends to quantum sensing, computing and communication networks. This Review delves into ME materials, ME composites and ME M/NEMS for IoT functions, including logic memory; magnetic sensing; wireless power transfer; ultra-compact antennas; power, radiofrequency and microwave electronics; and communication systems. Magnetoelectric (ME) microelectromechanical and nanoelectromechanical systems (M/NEMS) are vital for addressing the challenges of the internet of things (IoT) networks in size, energy efficiency and communication. This Review delves into ME materials and M/NEMS for IoT applications, such as sensing and communication technologies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要