Entanglement swapping via lossy channels using photon-number-encoded states

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Entanglement shared between distant parties is a key resource in quantum networks. However, photon losses in quantum channels significantly reduce the success probability of entanglement sharing, which scales quadratically with the channel transmission. Quantum repeaters using entanglement swapping can mitigate this effect, but usually require high-performance photonic quantum memories to synchronize photonic qubits. In this work, we theoretically and experimentally investigate an entanglement swapping protocol using photon-number-encoded states that can effectively alleviate quantum channel losses without requiring photonic quantum memories. We demonstrate that the protocol exhibits a success probability scaling linearly with the channel transmission. Furthermore, we show that while unbalanced channel losses can degrade the shared entanglement, this effect can be compensated by optimally adjusting the initial entangled states. Our results highlight the potential of photon-number encoding for realizing robust entanglement distribution in lossy quantum networks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要