The evolutionary history and functional specialization of microRNA genes in Arabidopsis halleri and A. lyrata

Flavia Pavan, Jacinthe Azevedo Favory, Eléanore Lacoste, Chloé Beaumont, Firas Louis,Christelle Blassiau,Corinne Cruaud,Karine Labadie,Sophie Gallina,Mathieu Genete, Vinod Kumar, Ute Kramer, Rita A. Batista, Claire Patiou, Laurence Debacker,Chloé Ponitzki, Esther Houzé,Eléonore Durand,Jean-Marc Aury,Vincent Castric,Sylvain Legrand

crossref(2024)

引用 0|浏览3
暂无评分
摘要
MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important regulatory roles in plant genomes. While some miRNA genes are deeply conserved, the majority appear to be species-specific, raising the question of how they emerge and integrate into cellular regulatory networks. To better understand this, we first performed a detailed annotation of miRNA genes in the closely related plants Arabidopsis halleri and A. lyrata and evaluated their phylogenetic conservation across 87 plant species. We then characterized the process by which newly emerged miRNA genes progressively acquire the properties of “canonical” miRNA genes, in terms of size and stability of the hairpin precursor, loading of their cleavage products into Argonaute proteins, and potential to regulate downstream target genes. Nucleotide polymorphism was lower in the mature miRNA sequence than in the other parts of the hairpin (stem, terminal loop), and the regions of coding sequences targeted by miRNAs also had reduced diversity as compared to their neighboring regions along the genes. These patterns were less pronounced for recently emerged than for evolutionarily conserved miRNA genes, suggesting a weaker selective constraint on the most recent miRNA genes. Our results illustrate the rapid birth-and-death of miRNA genes in plant genomes, and provide a detailed picture of the evolutionary processes by which a small fraction of them eventually integrate into “core” biological processes. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要