Efficient Homojunction/Heterojunction Photocatalyst via Integrating CsPbBr3 Quantum Dot Homojunction with TiO2 for Degradation of Organic Dyes.

Chun Sun,Yiwei Zhao, Yelin Ding, Fuhao Zhang, Zhihui Deng,Kai Lian, Zhengtong Wang, Jiazhi Cui,Wengang Bi

ACS applied materials & interfaces(2024)

引用 0|浏览0
暂无评分
摘要
A novel TiO2-CsPbBr3(Q) photocatalyst is proposed and rationally constructed, where CsPbBr3 perovskite quantum dots (QDs) of various sizes inside mesopore TiO2 (M-TiO2) are integrated. These perovskite QDs, generated in situ within M-TiO2, establish a type-II homojunction. Interestingly, a Z-scheme heterojunction is simultaneously formed at the interface between CsPbBr3 and TiO2. Due to the coexistence of the type-II homojunction and the Z-scheme heterojunction, photogenerated electrons are effectively transferred from TiO2 to CsPbBr3, thereby suppressing carrier recombination and thus enhancing the degradation of rhodamine B (RhB). Compared with pure CsPbBr3 and TiO2, TiO2-CsPbBr3(Q) shows significantly enhanced photocatalytic performance for RhB degradation. The degradation efficiency of RhB in the presence of the TiO2-CsPbBr3(Q) attains 97.7% in 5 min under light illumination, representing the highest efficiency observed among photocatalysts based on TiO2. This study will facilitate the development of superior semiconductor catalysts for photocatalytic applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要