Synthesis, Characterization of (Fe, Sn) Doped and Co-Doped Copper Oxide Nanoparticles and Evaluation of their Antibacterial Activities

Journal of Cluster Science(2024)

引用 0|浏览0
暂无评分
摘要
Undoped, Fe, Sn doped and Fe/Sn co-doped copper oxides are prepared by precipitation synthesis. X-ray diffraction confirmed that the all synthesized powders show a monoclinic main CuO phase. The insertion of Fe or/and Sn within the CuO matrix moderately affects the preferential growth direction. Basically Fourier Transform Infrared (FTIR) confirmed about functional group and their vibrations in the CuO samples. The reflectance of the undoped sample is higher than that of the other samples. Compared to undoped CuO, the doped and co-doped NPs exhibit red-shifted gap energy. Indeed, the Fe-doped, and Sn-doped CuO NPs, exhibit a slight decrease of gap energy (1.47, 1.45 eV respectively) compared to the undoped CuO (1.49 eV), while the Fe/Sn co-doped sample has a lower gap energy of 1.06 eV. Additionally, the antibacterial efficiencies of the all-synthesized samples are tested against Staphyloccus species. Doped and undoped CuO nanopowders show important antibacterial activity on tested bacteria with MICs values ranged between 0.039 to 1.25 mg/ml. Minimum Inhibitory Concentration value of 0.039 mg/ml was obtained with Fe-doped CuO NPs (CuO:Fe NPs) against S.aureus ATCC33591, whereas the highest MIC value of 1.25 mg/ml was obtained with CuO:Sn nanopowder against the strain S. epidermidis, which was the most resistant strain. Moreover, all CuO NPs, except CuO:Fe/Sn showed important anti-adhesive and antibacterial activities against S. epidermidis when used as pellets. This was confirmed either by cell counts using the determination of CFU/ml of bacterial suspension inside the hole, or by using fluorescence microscopy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要