BOATSv2: New ecological and economic features improve simulations of High Seas catch and effort

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Abstract. Climate change and industrial fishing have profound effects on marine ecosystems. Numerical models that capture key features of fish biomass dynamics and its interaction with fishing can help assess the biogeochemical and socio-economic consequences of these impacts. However, these models have significant biases and do not include many processes known to be relevant. Here we describe an updated version of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model for global fish and fisheries studies. The model incorporates new ecological and economic features designed to ameliorate prior biases. Recent improvements include reduction of fish growth rates in iron-limited high-nutrient low-chlorophyll regions, and the ability to simulate fisheries management. Novel features described here include a separation of pelagic and demersal fish communities to provide an expanded representation of ecological diversity, and spatially variable fishing costs and catchability for more realistic fishing effort dynamics. We also introduce a new set of observational diagnostics designed to evaluate the model beyond the boundary of large marine ecosystems. Following a multi-step parameter selection, the updated BOATSv2 model shows comparable performance to the original model in coastal ecosystems, accurately simulating catch, biomass and fishing effort. The revised model provides a markedly improved representation of fisheries in the High Seas, largely correcting the biases of the original version, including excessive high-sea catches and too rapid deepening of fishing effort over time. The updated model code is available for simulating both historical and future scenarios.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要