Reduction of Neuroinflammation and Seizures in a Mouse Model of CLN1 Batten Disease using the Small Molecule Enzyme Mimetic, N-Tert-Butyl Hydroxylamine.

Zach Fyke, Rachel Johansson,Anna I Scott, Devin Wiley, Daniel Chelsky, Joseph D. Zak, Nader Al Nakouzi,Kevin P Koster,Akira Yoshii

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
Infantile neuronal ceroid lipofuscinosis (CLN1 Batten Disease) is a devastating pediatric lysosomal storage disease caused by pathogenic variants in the CLN1 gene, which encodes the depalmitoylation enzyme, palmitoyl-protein thioesterase 1 (PPT1). CLN1 patients present with visual deterioration, psychomotor dysfunction, and recurrent seizures until neurodegeneration results in death, typically before fifteen years of age. Histopathological features of CLN1 include aggregation of lysosomal autofluorescent storage material (AFSM), as well as profound gliosis. The current management of CLN1 is relegated to palliative care. Here, we examine the therapeutic potential of a small molecule PPT1 mimetic, N-tert-butyl hydroxylamine (NtBuHA), in a Cln1-/- mouse model. Treatment with NtBuHA reduced AFSM accumulation both in vitro and in vivo. Importantly, NtBuHA treatment in Cln1-/- mice reduced neuroinflammation, mitigated epileptic episodes, and normalized motor function. Live cell imaging of Cln1-/- primary cortical neurons treated with NtBuHA partially rescued aberrant synaptic calcium dynamics, suggesting a potential mechanism contributing to the therapeutic effects of NtBuHA in vivo. Taken together, our findings provide supporting evidence for NtBuHA as a potential treatment for CLN1 Batten Disease.  ### Competing Interest Statement AIS and DW have stock in Circumvent. NAN, CH, PR and RJ all receive compensation for their time and expertise from Circumvent.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要