Hydrological response of drought impacts across catchments worldwide

Science of The Total Environment(2024)

引用 0|浏览5
暂无评分
摘要
Drought will inevitably affect linkages between different water components, which have previously been investigated across different spatiotemporal scales. Elucidating drought-induced precipitation (P) partition effects remain uncertain because they involve drought propagation, even inducing streamflow (Q) non-stationarity. This study collected data on 1069 catchments worldwide to investigate Q and evapotranspiration (ET) impacts from P deficit-derived reductions in drought propagation. Results show that P deficits trigger soil moisture drought, subsequently inducing negative Q and ET anomalies that vary under different climate regimes. Generally, drought-induced hydrological legacies indicate that breaks in hydrological linkages cause a relatively rapid Q response (i.e., negative Q anomaly), amplified by drought strength and duration. Compared with the Q response, the ET response to drought stress involves a more complex, associative vegetation response and an associative evaporative state controlled by water and energy, which lags behind the Q response and can also intensify with increasing drought severity and duration. This is confirmed by the ET response under different climate regimes. Namely, in drier climates, a positive ET anomaly can be detected in its early stages, this is unusual in wetter climate. Additionally, Q and ET sensitivity to drought strength can be mechanistically explained by the water and energy status. This implies that ET is mainly controlled by water and energy, resulting in higher and lower drought sensitivity within water- and energy-limited regions, respectively. Understanding the impacts of drought on Q and ET response is essential for identifying key linkages in drought propagation across different climate regimes. Our findings will also be useful for developing early warning and adaptation systems that support both human and ecosystem requirements.
更多
查看译文
关键词
Drought,Drought propagation,Soil moisture anomaly,Streamflow,Evapotranspiration,Climate regimes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要