Observation of strain-rate softening behavior in jammed granular media

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
The strain-rate sensitivity of confined granular materials has been widely explored, with most findings exhibiting rate-strengthening behaviors. This study, however, reveals a distinct rate-softening behavior across a certain strain rate range based on triaxial tests on particle clusters of various materials with different surface properties, particle sizes, shapes, and stiffness. This softening effect is especially pronounced in the case of common rice particles. By examining the behavior of rice particles under different confining pressure and surface conditions, and directly measuring the frictional coefficient across various loading rates, we find that the reduction in surface frictional coefficient with the increasing strain rate predominantly contributes to this rate-softening behavior. This conclusion is validated by results from Finite Element Method (FEM) simulations. Additionally, we identify confining pressure as a critical factor regulating the normal stress between particles, and thereby enhancing frictional behavior. Rheometer tests reveal that the shear modulus exhibits a similar rate-softening trend. This study of rate-softening behavior in granular materials enhances our understanding of the mechanisms during their deformation under confining pressure. It also suggests that local inter-particle tribology significantly impacts overall granular behavior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要