Murine Left Pulmonary Hilar Clamp Model of Lung Ischemia Reperfusion Injury.

Journal of visualized experiments : JoVE(2024)

引用 0|浏览2
暂无评分
摘要
Ischemia reperfusion injury (IRI) during lung transplantation is a major risk factor for post-transplant complications, including primary graft dysfunction, acute and chronic rejection, and mortality. Efforts to study the underpinnings of IRI led to the development of a reliable and reproducible mouse model of left lung hilar clamping. This model involves a surgical procedure performed in an anesthetized and intubated mouse. A left thoracotomy is performed, followed by careful lung mobilization and dissection of the left pulmonary hilum. The hilar clamp involves reversible suture ligation of the pulmonary hilum with a slipknot, which stops the arterial inflow, venous outflow, and airflow through the left mainstem bronchus. Reperfusion is initiated by careful removal of the suture. Our laboratory uses 30 min of ischemia and 1 h of reperfusion for the experimental model in the current investigations. However, these time periods can be modified depending on the specific experimental question. Immediately prior to sacrifice, arterial blood gas can be obtained from the left ventricle after a 4 min period of right hilar clamping to ensure that the PaO2 values obtained are attributed to the injured left lung alone. We also describe a method to measure cell extravasation with flow cytometry, which involves intravenous injection of a fluorochrome-labeled antibody specific for the cell(s) to be studied prior to sacrifice. The left lung can then be harvested for flow cytometry, frozen or fixed, paraffin-embedded immunohistochemistry, and quantitative polymerase chain reaction. This hilar clamp technique allows for detailed study of the cellular and molecular mechanisms underlying IRI. Representative results reveal decreased left lung oxygenation and histologic evidence of lung injury following hilar clamping. This technique can be readily learned and reproduced by personnel with and without microsurgical experience, leading to reliable and consistent results and serving as a widely adoptable model for studying lung IRI.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要