A SAT Scalpel for Lattice Surgery: Representation and Synthesis of Subroutines for Surface-Code Fault-Tolerant Quantum Computing

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Quantum error correction is necessary for large-scale quantum computing. A promising quantum error correcting code is the surface code. For this code, fault-tolerant quantum computing (FTQC) can be performed via lattice surgery, i.e., splitting and merging patches of code. Given the frequent use of certain lattice-surgery subroutines (LaS), it becomes crucial to optimize their design in order to minimize the overall spacetime volume of FTQC. In this study, we define the variables to represent LaS and the constraints on these variables. Leveraging this formulation, we develop a synthesizer for LaS, LaSsynth, that encodes a LaS construction problem into a SAT instance, subsequently querying SAT solvers for a solution. Starting from a baseline design, we can gradually invoke the solver with shrinking spacetime volume to derive more compact designs. Due to our foundational formulation and the use of SAT solvers, LaSsynth can exhaustively explore the design space, yielding optimal designs in volume. For example, it achieves 8 two states-of-the-art human designs for the 15-to-1 T-factory, a bottleneck in FTQC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要