High-Temperature Polylactic Acid Proves Reliable and Safe for Manufacturing 3D-Printed Patient-Specific Instruments in Pediatric Orthopedics-Results from over 80 Personalized Devices Employed in 47 Surgeries.

Grazia Chiara Menozzi,Alessandro Depaoli, Marco Ramella, Giulia Alessandri,Leonardo Frizziero, Adriano De Rosa, Francesco Soncini, Valeria Sassoli, Gino Rocca,Giovanni Trisolino

Polymers(2024)

引用 0|浏览0
暂无评分
摘要
(1) Background: Orthopedic surgery has been transformed by 3D-printed personalized instruments (3DP-PSIs), which enhance precision and reduce complications. Hospitals are adopting in-house 3D printing facilities, using cost-effective methods like Fused Deposition Modeling (FDM) with materials like Polylactic acid (PLA) to create 3DP-PSI. PLA's temperature limitations can be overcome by annealing High-Temperature PLA (ann-HTPLA), enabling steam sterilization without compromising properties. Our study examines the in vivo efficacy of ann-HTPLA 3DP-PSI in pediatric orthopedic surgery. (2) Methods: we investigated safety and efficacy using ann-HTPLA 3DP-PSI produced at an "in-office" 3D-printing Point-of-Care (3DP-PoC) aimed at correcting limb deformities in pediatric patients. Data on 3DP-PSI dimensions and printing parameters were collected, along with usability and complications. (3) Results: Eighty-three ann-HTPLA 3DP-PSIs were utilized in 33 patients (47 bone segments). The smallest guide used measured 3.8 cm3, and the largest measured 58.8 cm3. Seventy-nine PSIs (95.2%; 95% C.I.: 88.1-98.7%) demonstrated effective use without issues. Out of 47 procedures, 11 had complications, including 2 infections (4.3%; 95% CI: 0.5-14.5%). Intraoperative use of 3DP-PSIs did not significantly increase infection rates or other complications. (4) Conclusions: ann-HTPLA has proven satisfactory usability and safety as a suitable material for producing 3DP-PSI in an "in-office" 3DP-PoC.
更多
查看译文
关键词
polylactic acid,high-temperature polylactic acid,annealing,sterilization,in vivo,orthopedic surgery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要