Toward Direct Exploration of the Few-Femtosecond Dynamics of Electronic Coherence and Correlation in Quantum Materials Using Time- and Angle-Resolved Photoemission Spectroscopy

Crystals(2024)

引用 0|浏览0
暂无评分
摘要
Over the last two decades, time- and angle-resolved photoemission spectroscopy (trARPES) has become a mature and established experimental technique for the study of ultrafast electronic and structural dynamics in materials. To date, most trARPES investigations have focused on the investigation of processes occurring on time scales of ≳30 fs, in particular, relaxation and thermalization, and have therefore been blind to the initial sub-10 fs dynamics related to electronic coherence and correlation effects. In this article, we illustrate how current trARPES setups reach their limits when it comes to addressing such extraordinarily short time scales and present an experimental configuration that provides the time, energy, and momentum resolutions required to monitor few-femtosecond dynamics on the relevant energy and momentum scales. We discuss the potential capabilities of such an experiment to study the electronic response of materials in the strong-field interaction regime at PHz frequencies and finally review a theoretical concept that may in the future even overcome the competing resolution limitations of trARPES experiments, as imposed by the time–bandwidth product of the probing laser pulse. Our roadmap for ultrafast trARPES indicates a path to break new experimental ground in quantum nonequilibrium electronic dynamics, from which new possibilities for ultrafast control of optical and electronic signals in quantum materials can be explored.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要