Trajectory Tracking Control of Mobile Manipulator Based on Improved Sliding Mode Control Algorithm

Shuwan Cui, Huzhe Song, Te Zheng, Penghui Dai

Processes(2024)

引用 0|浏览0
暂无评分
摘要
Research on trajectory tracking control for climbing welding robots holds significant importance in the field of automated welding. However, existing trajectory tracking methods suffer from issues such as jitter and slow speed. In this paper, an improved sliding mode control strategy is proposed based on the self-designed wall-climbing welding mobile manipulator. Firstly, a new adaptive sliding mode control strategy is proposed for the mobile platform based on the kinematic model. By introducing a new approach law, the controller is designed when the distance between the center of mass is unknown. Secondly, regarding the manipulator, we analyze simplified dynamic equations, extract uncertain components, and utilize a CNN for compensation. This compensation strategy is integrated into the sliding mode control law, achieving precise control over the manipulator and effectively resolving issues like slow tracking speeds, large errors, and chattering. The stability of the robot control system is proved by the Lyapunov function. Through simulation analysis and experimental validation, the proposed control method is confirmed to be feasible and superior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要