Prediction of soil organic carbon using machine learning techniques and geospatial data for sustainable agriculture

Shyamal Mundada,Pooja Jain,Nirmal Kumar

Journal of Intelligent & Fuzzy Systems(2024)

引用 0|浏览0
暂无评分
摘要
Sustainable agriculture revolves around soil organic carbon (SOC), which is essential for numerous soil functions and ecological attributes. Farmers are interested in conserving and adding additional soil organic carbon to certain fields in order to improve soil health and productivity. The relationship between soil and environment that has been discovered and standardized throughout time has enhanced the progress of digital soil-mapping techniques; therefore, a variety of machine learning techniques are used to predict soil properties. Studies are thriving at how effectively each machine learning method maps and predicts SOC, especially at high spatial resolutions. To predict SOC of soil at a 30 m resolution, four machine learning models—Random Forest, Support Vector Machine, Adaptive Boosting, and k-Nearest Neighbour were used. For model evaluation, two error metrics, namely R2 and RMSE have been used. The findings demonstrated that the calibration and validation sets’ descriptive statistics sufficiently resembled the entire set of data. The range of the calculated SOC content was 0.06 to 1.76 %. According to the findings of the study, Random Forest showed good results for both cases, i.e. evaluation using cross validation and without cross validation. Using cross validation, RF confirmed highest R2 as 0.5278 and lowest RMSE as 0.1683 for calibration dataset while without cross validation it showed R2 as 0.8612 and lowest RMSE as 0.0912 for calibration dataset. The generated soil maps will help farmers adopt precise knowledge for decisions that will increase farm productivity and provide food security through the sustainable use of nutrients and the agricultural environment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要