Analysis of propagation and resonance properties of longitudinal leaky surface acoustic wave on LiNbO3/SiC bonded structure

Ryo Takei,Masashi Suzuki,Shoji Kakio, Yasushi Yamamoto

Japanese Journal of Applied Physics(2024)

引用 0|浏览0
暂无评分
摘要
Abstract The propagation and resonance properties of longitudinal leaky surface acoustic waves (LLSAW) on a bonded structure comprising an X-cut LiNbO3 (LN) thin plate and a 4H-SiC support substrate are theoretically investigated. The strong LLSAW responses with high Q factors were obtained at the LN thin-plate thickness h where the LLSAW phase velocity was slower than the bulk shear wave of 4H-SiC of 7126 m/s, and a fractional bandwidth (FBW) of 9–10% was obtained for the normalized Al film thickness by wavelength h Al/λ = 0.06–0.07 and h/λ = 0.30–0.40. Moreover, even at h/λ with a faster phase velocity than the bulk shear wave of 4H-SiC, the strong LLSAW responses without spurious response owing to the LLSAW higher-order mode were obtained. Finally, h Al/λ = 0.031 and h/λ = 0.19 were extracted to obtain a phase velocity of 7800 m/s, high Q factors, and FBW of 7.6%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要