Suppression of cracking in drying colloidal suspensions with chain-like particles.

The Journal of chemical physics(2024)

引用 0|浏览4
暂无评分
摘要
The prevention of drying-induced cracking is crucial in maintaining the mechanical integrity and functionality of colloidal deposits and coatings. Despite exploring various approaches, controlling drying-induced cracking remains a subject of great scientific interest and practical importance. By introducing chain-like particles composed of the same material and with comparable size into commonly used colloidal suspensions of spherical silica nanoparticles, we can significantly reduce the cracks formed in dried particle deposits and achieve a fivefold increase in the critical cracking thickness of colloidal silica coatings. The mechanism underlying the crack suppression is attributed to the increased porosity and pore sizes in dried particle deposits containing chain-like particle, which essentially leads to reduction in internal stresses developed during the drying process. Meanwhile, the nanoindentation measurements reveal that colloidal deposits with chain-like particles exhibit a smaller reduction in hardness compared to those reported using other cracking suppression approaches. This work demonstrates a promising technique for preparing colloidal coatings with enhanced crack resistance while maintaining desirable mechanical properties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要