Enhancing Thermoelectric Performance of n-Type Bi2Te2.7Se0.3 through Incorporation of Amorphous Si3N4 Nanoparticles.

ACS applied materials & interfaces(2024)

引用 0|浏览0
暂无评分
摘要
Bi2Te3-based thermoelectric (TE) materials are the state-of-the-art compounds for commercial applications near room temperature. Nevertheless, the application of the n-type Bi2Te2.7Se0.3 (BTS) is restricted by the comparatively low figure of merit (ZT) and intrinsic embrittlement. Here, we show that through dispersion of amorphous Si3N4 (a-Si3N4) nanoparticles both 14% increase in power factor (at 300 K) and 48% decrease in lattice thermal conductivity are simultaneously realized. The increased power factor comes from enhanced thermopower and reduced electrical resistivity while the reduced lattice thermal conductivity originates mainly from scattering of middle- and low-frequency phonons at the incorporated a-Si3N4 nanoparticles. As a result, a large ZTmax = 1.19 (at 373 K) and an average ZTave ∼ 1.12 (300-473 K) with better mechanical properties are achieved for the BTS/0.25 wt % Si3N4 sample. Present results demonstrate that the incorporation of a-Si3N4 is a promising way to improve TE performance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要