Evidence of gas phase nucleation of nanodiamond in microwave plasma assisted chemical vapor deposition

AIP Advances(2024)

引用 0|浏览2
暂无评分
摘要
The mechanism of ballas-like nanodiamond formation still remains elusive, and this work attempts to analyze its formation in the framework of activation energy (Ea) of nanodiamond films grown from a H2/CH4 plasma in a 2.45 GHz chemical vapor deposition system. The Ea was calculated from the Arrhenius equation corresponding to the thickness growth rate using substrate temperature (∼1000−1300 K) in all the calculations. While the calculated values matched with the Ea for nanodiamond formation throughout the literature, these values of ∼10 kcal/mol were lower compared to ∼15–25 kcal/mol for standard single crystal diamond (SCD) formation, concluding thus far that the energetics and processes involved were different. Further, the substrate preparation and sample collection method were modified while keeping the growth parameters constant. Unseeded Si substrate was physically separated from the plasma discharge by a molybdenum disk with a pinhole drilled in it. Small quantity of a sample substance was collected on the substrate. The sample was characterized by electron microscopy and Raman spectroscopy, confirming it to be nanodiamond, thus suggesting that nanodiamond self-nucleated in the plasma and flowed to the substrate that acted as a mere collection plate. It is hypothesized then, if nanodiamond nucleates in gas phase, gas temperature has to be used in the Arrhenius analysis. The Ea values for all the nanodiamond films were re-calculated using the simulated gas temperature (∼1500−2000 K) obtained from a simple H2/CH4 plasma model, giving new values within the range characteristic to SCD formation. Based on these findings, a unified growth mechanism for nanodiamond and SCD is proposed, concluding that the rate-limiting reactions for nanodiamond and SCD formation are the same.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要