The Development of Multi-Resistant Rice Restorer Lines and Hybrid Varieties by Pyramiding Resistance Genes against Blast and Brown Planthopper

Agronomy(2024)

引用 0|浏览0
暂无评分
摘要
Rice blast, caused by the fungus Magnaporthe oryzae, and brown planthopper (BPH) infestation are two of the most destructive problems of rice production in China. The development of multi-resistant varieties is widely recognized as the most efficient and environmentally friendly approach to controlling crop diseases and pests. Functional molecular markers (FMMs) have been developed from functional variants in the genic region associated with trait variation, greatly enhancing the efficiency of identifying and pyramiding valuable genes in crop breeding. In this study, two FMMs and a multiplex PCR amplification system were developed for two major broad-spectrum BPH resistance genes, Bph6 and Bph9. With the assistance of FMMs in the multi-resistant rice restorer-line development pipeline, two lines (Huahui7713 and Huahui3006) with blast and BPH resistance were developed by pyramiding three resistance genes Pigm, Bph6 and Bph9. Two new hybrid rice varieties, Weiliangyou7713 and Xuanliangyou3006, derived from Huahui7713 and Huahui3006, have been developed and commercialized in China. Weiliangyou7713 and Xuanliangyou3006 exhibit enhanced resistance to both blast and BPH, while maintaining optimal yield and grain quality. The adoption of Weiliangyou7713 continues to expand, now being cultivated on a large scale, which is promising for its future role in reducing the dependence on chemical fungicides and pesticides in rice production. This suggests that the implementation of Huahui7713 and Huahui3006 in targeted breeding programs could be highly beneficial for developing rice varieties with strong resistance to blast and BPH.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要