Temperature-driven coordination of circadian transcriptional regulation

PLOS COMPUTATIONAL BIOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
The circadian clock is an evolutionarily-conserved molecular oscillator that enables species to anticipate rhythmic changes in their environment. At a molecular level, the core clock genes induce circadian oscillations in thousands of genes in a tissue-specific manner, orchestrating myriad biological processes. While previous studies have investigated how the core clock circuit responds to environmental perturbations such as temperature, the downstream effects of such perturbations on circadian regulation remain poorly understood. By analyzing bulk-RNA sequencing of Drosophila fat bodies harvested from flies subjected to different environmental conditions, we demonstrate a highly condition-specific circadian transcriptome: genes are cycling in a temperature-specific manner, and the distributions of their phases also differ between the two conditions. Further employing a reference-based gene regulatory network (Reactome), we find evidence of increased gene-gene coordination at low temperatures and synchronization of rhythmic genes that are network neighbors. We report that the phase differences between cycling genes increase as a function of geodesic distance in the low temperature condition, suggesting increased coordination of cycling on the gene regulatory network. Our results suggest a potential mechanism whereby the circadian clock mediates the fly's response to seasonal changes in temperature. The circadian clock enables organisms to anticipate and adapt to changes in their environment. While behavioral changes have been observed in Drosophila melanogaster subjected to low temperatures, little is known regarding how these changes are enacted at a molecular level. By conducting bulk RNA sequencing from fruit flies, we observe that genome-wide circadian oscillation patterns are temperature dependent. Intriguingly, we find that morning and evening peaks of transcriptomic activity shift closer together, consistent with anticipation of a shorter photoperiod in cooler winter weather. We further find that the low-temperature dynamics are highly coordinated with respect to a reference-based gene regulatory network. Our findings provide insights into the mechanisms by which flies adapt to environmental temperature changes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要