Mitochondrial Ca2+ Uniporter–Dependent Energetic Dysfunction Drives Hypertrophy in Heart Failure

JACC: Basic to Translational Science(2024)

引用 0|浏览3
暂无评分
摘要
The role of the mitochondrial calcium uniporter (MCU) in energy dysfunction and hypertrophy in heart failure (HF) remains unknown. In angiotensin II (ANGII)–induced hypertrophic cardiac cells we have shown that hypertrophic cells overexpress MCU and present bioenergetic dysfunction. However, by silencing MCU, cell hypertrophy and mitochondrial dysfunction are prevented by blocking mitochondrial calcium overload, increase mitochondrial reactive oxygen species, and activation of nuclear factor kappa B–dependent hypertrophic and proinflammatory signaling. Moreover, we identified a calcium/calmodulin–independent protein kinase II/cyclic adenosine monophosphate response element–binding protein signaling modulating MCU upregulation by ANGII. Additionally, we found upregulation of MCU in ANGII-induced left ventricular HF in mice, and in the LV of HF patients, which was correlated with pathological remodeling. Following left ventricular assist device implantation, MCU expression decreased, suggesting tissue plasticity to modulate MCU expression.
更多
查看译文
关键词
heart failure,mitochondrial calcium overload,mitochondrial calcium uniporter,mitochondrial dysfunction,pathological remodeling,reactive oxygen species
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要