Airway Stability in Sleep Apnea: Assessing Continuous Positive Airway Pressure Efficiency

Respiratory Physiology & Neurobiology(2024)

引用 0|浏览0
暂无评分
摘要
Obstructive Sleep Apnea Syndrome (OSAS) disrupts millions of lives with its burden of airway obstruction during sleep. Continuous Positive Airway Pressure (CPAP) therapy has been scrutinized for its biomechanical impact on the respiratory tract. This study leverages computational fluid dynamics to investigate CPAP's effects at 9cm H2O (882.6Pa) on the computed-tomography-based nasal-to-14-generation full respiratory tract model compared to ambient conditions, focusing on static pressure, airflow velocity, and shear stress. Our findings reveal that CPAP significantly increases static pressure, enhancing airway patency without adverse changes in airflow velocity or harmful shear stress on lung tissue, challenging prior concerns about its safety. Notably, the larynx experiences the highest shear stress due to its narrow anatomy, yet CPAP therapy overall supports airway walls against collapse. This investigation highlights CPAP's critical role in OSAS treatment, offering reassurance about its safety and efficacy. By clarifying CPAP therapy's physiological impacts, our study contributes vital insights for optimizing OSAS management strategies, affirming CPAP's benefit in maintaining open airways with minimal tissue strain.
更多
查看译文
关键词
Continuous positive air pressure,Respiratory tract, Obstructive sleep apnea,Computational fluid dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要