Superradiant phase transition in a large interacting driven atomic ensemble in free space

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Atomic ensembles strongly interacting with light constitute rich quantum-optical many-body systems, with the potential for observing cooperative effects and dissipative nonequilibrium phase transitions. We theoretically analyze the conditions under which a driven atomic ensemble in free space, characterized by strong dipole-dipole interactions and large spatial extent, can undergo a superradiant phase transition, also known as cooperative resonance fluorescence. In an atomic array, stationary states that conserve the collective pseudospin exhibit completely cooperative decay and undergo a second-order phase transition in the large atom number limit. In contrast, decay mechanisms on longer timescales that fail to conserve pseudospin can lead to discontinuous first-order phase transition at a critical finite atom number, disrupting cooperation despite sharing many similar observable characteristics. A hallmark of the superradiant phase transition is an abrupt shift from total light reflection off the atoms to rapidly increasing transmission, accompanied by significant quantum fluctuations, as a function of light intensity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要