Two types of gallium exposure to aluminum

V. M. Skachkov,L. A. Pasechnik,S. A. Bibanaeva, I. S. Medyankina, N. A. Sabirzyanov

Расплавы(2023)

引用 0|浏览0
暂无评分
摘要
The effect of gallium on aluminum during their fusion is investigated. The corrosion rate of aluminum alloys with 1, 2 and 5 at % gallium content was experimentally determined, which was 0.001, 0.00101 and 0.00062 g/m2 · h, respectively, which is less than that of pure grade A99 aluminum – 0.0016 g/m2 · h. The rate of dissolution of these alloys in acidic and alkaline media is determined. X-ray phase analysis showed the homogeneity of the alloys under consideration. The morphology of aluminum alloys with gallium was studied, after exposure to an aggressive environment – a solution of hydrochloric acid. The possibility of obtaining hydrogen and nanoscale alumina by decomposition of water by activated gallium aluminum alloy is shown. Activation of the aluminum surface by gallium alloy occurs according to the Rebinder effect and the article presents a micrograph of the surface of aluminum treated with Ga-Sn alloy, clearly demonstrating this effect. When using metallic gallium in contact with aluminum, the interaction requires heating to a temperature above 30°C (the melting point of gallium is 29.7°C), the melting point of the eutectic composition 92Ga–8Sn is 20.0°C, which allows the interaction to begin at room temperature. At temperatures of about 4°C, activated aluminum can be stored for a long time. The quality of hydrogen obtained by decomposition of water should be higher than that obtained by cracking, and the cost is close to a well-developed technology of electrolysis of water and no more than 2 times the cost of its synthesis via cracking of hydrocarbons. Gallium and its liquid alloys are non-toxic, almost do not interact with water, activate aluminum, preventing the formation of a protective oxide film, penetrate into the intergranular space and aluminum easily interacts with water, forming hydrogen and aluminum hydroxide.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要