Social complexity affects cognitive abilities but not brain structure in a Poeciliid fish.

Zegni Triki, Tunhe Zhou, Elli Argyriou, Edson Sousa de Novais, Oriane Servant,Niclas Kolm

Behavioral ecology : official journal of the International Society for Behavioral Ecology(2024)

引用 0|浏览2
暂无评分
摘要
Some cognitive abilities are suggested to be the result of a complex social life, allowing individuals to achieve higher fitness through advanced strategies. However, most evidence is correlative. Here, we provide an experimental investigation of how group size and composition affect brain and cognitive development in the guppy (Poecilia reticulata). For 6 months, we reared sexually mature females in one of 3 social treatments: a small conspecific group of 3 guppies, a large heterospecific group of 3 guppies and 3 splash tetras (Copella arnoldi)-a species that co-occurs with the guppy in the wild, and a large conspecific group of 6 guppies. We then tested the guppies' performance in self-control (inhibitory control), operant conditioning (associative learning), and cognitive flexibility (reversal learning) tasks. Using X-ray imaging, we measured their brain size and major brain regions. Larger groups of 6 individuals, both conspecific and heterospecific groups, showed better cognitive flexibility than smaller groups but no difference in self-control and operant conditioning tests. Interestingly, while social manipulation had no significant effect on brain morphology, relatively larger telencephalons were associated with better cognitive flexibility. This suggests alternative mechanisms beyond brain region size enabled greater cognitive flexibility in individuals from larger groups. Although there is no clear evidence for the impact on brain morphology, our research shows that living in larger social groups can enhance cognitive flexibility. This indicates that the social environment plays a role in the cognitive development of guppies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要