Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions

Applied Energy(2024)

引用 0|浏览0
暂无评分
摘要
Accurate solar irradiance forecasts can make solar power forecasts more reliable, which can help the power grid dispatch reasonably. In practice, Numerical Weather Prediction (NWP) is widely applied in solar irradiance forecasts. In this paper, the statistical NWP Global Horizontal Irradiance (GHI) error analysis shows that the characteristics of NWP GHI error vary obviously under different weather conditions. However, existing correction methods are not designed contrapuntally for different weather conditions, resulting in poor correction performance. To solve this problem, a hybrid method is proposed to get day-ahead correction results for NWP GHI. Specifically, the hybrid method consists of three key parts, including Deep Clustering (DC), Variational Mode Decomposition (VMD), and an Encoder–Decoder based Correction model (EDC). DC is used to categorize the historical samples into three clusters, the input of which is the multi-dimensional information series containing observed data and NWP data. After a feature selection by VMD, the correction models are trained on each cluster respectively. The performance of the proposed model is evaluated with a public dataset and an actual field dataset, and the results demonstrate that the accuracy has been effectively improved by the proposed method compared with other models. In addition, we find that adopting VMD is effective in improving the correction accuracy, and the root mean square error is reduced by 5.70% and 9.32% compared with models without it.
更多
查看译文
关键词
Numerical Weather Prediction,Solar forecasting,Day-ahead correction,Deep learning,Clustering,Variational mode decomposition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要