Surface-Phosphided Metal Oxide Microspheres as Catalytic Host of Sulfur to Enhance the Performance of Lithium-Sulfur Batteries.

ACS applied materials & interfaces(2024)

引用 0|浏览1
暂无评分
摘要
Lithium-sulfur (Li-S) batteries are one of the most promising high-energy density secondary batteries due to their high theoretical energy density of 2600 Wh kg-1. However, the sluggish kinetics and severe "shuttle effect" of polysulfides are the well-known barriers that hinder their practical applications. A carefully designed catalytic host of sulfur may be an effective strategy that not only accelerates the conversion of polysulfides but also limit their dissolution to mitigate the "shuttle effect." Herein, in situ surface-phosphided Ni0.96Co0.03Mn0.01O (p-NCMO) oxide microspheres are prepared via gas-phase phosphidation as a catalytic host of sulfur. The as-prepared unique heterostructured microspheres, with enriched surface-coated metal phosphide, exhibit superior synergistic effect of catalytic conversion and absorption of the otherwise soluble intermediate polysulfides. Correspondingly, the sulfur cathode exhibits excellent electrochemical performance, including a high initial discharge capacity (1162 mAh gs-1 at 0.1C), long cycling stability (491 mAh gs-1 after 1000 cycles at 1C), and excellent rate performance (565 mAh gs-1 at 5C). Importantly, the newly prepared sulfur cathode shows a high areal capacity of 4.0 mAh cm-2 and long cycle stability under harsh conditions (high sulfur loading of 5.3 mg cm-2 and lean electrolyte/sulfur ratio of 5.8 μL mg-1). This work proposes an effective strategy to develop the catalytic hosts of sulfur for achieving high-performance Li-S batteries via surface phosphidation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要