Caging in Motion: Characterizing Robustness in Manipulation through Energy Margin and Dynamic Caging Analysis

CoRR(2024)

引用 0|浏览7
暂无评分
摘要
To develop robust manipulation policies, quantifying robustness is essential. Evaluating robustness in general dexterous manipulation, nonetheless, poses significant challenges due to complex hybrid dynamics, combinatorial explosion of possible contact interactions, global geometry, etc. This paper introduces “caging in motion”, an approach for analyzing manipulation robustness through energy margins and caging-based analysis. Our method assesses manipulation robustness by measuring the energy margin to failure and extends traditional caging concepts for a global analysis of dynamic manipulation. This global analysis is facilitated by a kinodynamic planning framework that naturally integrates global geometry, contact changes, and robot compliance. We validate the effectiveness of our approach in the simulation and real-world experiments of multiple dynamic manipulation scenarios, highlighting its potential to predict manipulation success and robustness.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要