Z-Type Ligand Enables Efficient and Stable Deep-Blue Perovskite Light-Emitting Diodes.

ACS applied materials & interfaces(2024)

引用 0|浏览2
暂无评分
摘要
During the synthesis of deep-blue perovskite quantum dots (PQDs), they generally emerge as a two-dimensional byproduct with poor yield and low photoluminescence quantum yield (PLQY) due to amine ligand enrichment-induced abundant surface defects. Herein, we provide a colloidal synthesis method to prepare deep-blue CsPbBr3 PQDs in a green nontoxic solvent via strategic Z-type ligand engineering. Z-type ligands of zinc octanoate enable the formation of robust coordination bonds with surface bromide ions of PQDs, maintaining acid-base equilibrium and reducing excess amine enrichment on the PQDs surface. Consequently, homogeneous and monodispersed PQDs with improved PLQY of 73% are successfully synthesized, achieving efficient deep-blue LEDs with a peak EQE of 5.46%, a maximum luminance of 847.6 cd/m2, and an operational half-lifetime of 14 min. The devices exhibit color coordinates of (0.137, 0.049), closely approximating the Rec. 2020 blue standard. Our work offers a potentially eco-friendly and viable route for realizing high-performance LEDs in the deep-blue region.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要