Alternating projection combined with fast gradient projection (FGP-AP) method for intensity-only measurement optical diffraction tomography in LED array microscopy.

Zewen Yang,Lu Zhang, Tong Liu, Huijun Wang, Zhiyuan Tang,Hong Zhao,Li Yuan,Zhenxi Zhang,Xiaolong Liu

Biomedical optics express(2024)

引用 0|浏览0
暂无评分
摘要
Optical diffraction tomography (ODT) is a powerful label-free measurement tool that can quantitatively image the three-dimensional (3D) refractive index (RI) distribution of samples. However, the inherent "missing cone problem," limited illumination angles, and dependence on intensity-only measurements in a simplified imaging setup can all lead to insufficient information mapping in the Fourier domain, affecting 3D reconstruction results. In this paper, we propose the alternating projection combined with the fast gradient projection (FGP-AP) method to compensate for the above problem, which effectively reconstructs the 3D RI distribution of samples using intensity-only images captured from LED array microscopy. The FGP-AP method employs the alternating projection (AP) algorithm for gradient descent and the fast gradient projection (FGP) algorithm for regularization constraints. This approach is equivalent to incorporating prior knowledge of sample non-negativity and smoothness into the 3D reconstruction process. Simulations demonstrate that the FGP-AP method improves reconstruction quality compared to the original AP method, particularly in the presence of noise. Experimental results, obtained from mouse kidney cells and label-free blood cells, further affirm the superior 3D imaging efficacy of the FGP-AP method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要