DNA glycosylases provide antiviral defence in prokaryotes.

Amer A Hossain, Ying Z Pigli, Christian F Baca,Søren Heissel, Alexis Thomas,Vincent K Libis,Ján Burian, Joshua S Chappie,Sean F Brady,Phoebe A Rice,Luciano A Marraffini

Nature(2024)

引用 0|浏览1
暂无评分
摘要
Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要