Jellyfish Protein Hydrolysates: Multifunctional Bioactivities Unveiled in the Battle Against Diabetes, Inflammation, and Bacterial Pathogenesis

Microbial Pathogenesis(2024)

引用 0|浏览2
暂无评分
摘要
This study investigates the multifunctional bioactivities of pepsin-hydrolyzed jellyfish by-products (Rhopilema hispidum and Lobonema smithii), focusing on their anti-α-glucosidase activity, anti-inflammatory effects, anti-bacterial properties, and ability to inhibit biofilm formation of Staphylococcus aureus. Our findings revealed that jellyfish protein hydrolysates, particularly from Rhopilema hispidum, exhibit significant anti-α-glucosidase activity, surpassing the well-known α-glucosidase inhibitor Acarbose. Furthermore, we demonstrated the anti-inflammatory capabilities of these hydrolysates in suppressing lipopolysaccharide (LPS)-induced nitric oxide production in murine macrophage cells. This effect was dose-dependent and non-cytotoxic, highlighting the hydrolysate potential in treating inflammation-related conditions. Regarding anti-bacterial activity, pepsin-hydrolyzed jellyfish selectively exhibited a potent effect against S. aureus, including Methicillin-susceptible and Methicillin-resistant strains. This activity was evident at minimum inhibitory concentrations (MIC) of 25 μg/mL for S. aureus ATCC10832, while a modest effect was observed against other Gram-positive strains. The hydrolysates effectively delayed bacterial growth dose-dependently, suggesting their use as alternative agents against bacterial infections. Most notably, pepsin-hydrolyzed jellyfish showed significant anti-biofilm activity against S. aureus. The umbrella section hydrolysate of Rhopilema hispidum was particularly effective, reducing biofilm formation through downregulating the icaA gene, crucial for biofilm development. Furthermore, the hydrolysates modulated the expression of the agrA gene, a key regulator in the pathogenesis of S. aureus. In conclusion, pepsin-hydrolyzed jellyfish protein hydrolysates exhibit promising multifunctional bioactivities, including anti-diabetic, anti-inflammatory, antibacterial, and anti-biofilm properties. These findings suggest their potential application in pharmaceutical and nutraceutical fields, particularly in managing diabetic risks, inflammation, bacterial infections, and combating the biofilm-associated pathogenicity of S. aureus.
更多
查看译文
关键词
Biofilm,Inflammation,S. aureus, Jellyfish,Hydrolysates
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要