Thermoacoustic Micro-CHP System for Low-Grade Thermal Energy Utilization in Residential Buildings

Energy(2024)

引用 0|浏览0
暂无评分
摘要
Effectively utilizing low-grade thermal energy is a promising approach to mitigating greenhouse gas emissions while reducing the burden on centralized power grids. Current thermoacoustic heat pumps and power generators face challenges such as high onset temperature differentials and low performance. This paper addresses these challenges by introducing a gas-liquid resonator into a thermoacoustic combined heat and power systems to recover low-grade thermal energy in residential buildings. Through Sage modeling and calculations, the internal characteristics of the proposed system and its output performance under different operating conditions are explored. At a heating temperature of 350 °C, the system can generate 6.4 kW of output thermal power, 0.9 kW of electricity, and overall exergy efficiency is 79.3%. Combining neural network models with case studies conducted in Spain and Finland, the system can annually save 5.6 MWh and 20.7 MWh in fuel energy, reduce emissions of 1374 kg and 5180 kg of carbon dioxide, and save a total cost of €611 and €2324, respectively. Furthermore, comparisons with other emerging micro-CHP systems highlight the efficiency of the proposed system. These results indicate the high potential of thermoacoustic combined heat and power systems in recovering low-grade thermal energy and achieving energy savings and emission reductions.
更多
查看译文
关键词
Thermoacoustic,Heat pump,Power generation,Combined heating and power (CHP),Low-grade thermal energy utilization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要