Revisiting Noise Resilience Strategies in Gesture Recognition: Short-Term Enhancement in Surface Electromyographic Signal Analysis

arxiv(2024)

引用 0|浏览4
暂无评分
摘要
Gesture recognition based on surface electromyography (sEMG) has been gaining importance in many 3D Interactive Scenes. However, sEMG is easily influenced by various forms of noise in real-world environments, leading to challenges in providing long-term stable interactions through sEMG. Existing methods often struggle to enhance model noise resilience through various predefined data augmentation techniques. In this work, we revisit the problem from a short term enhancement perspective to improve precision and robustness against various common noisy scenarios with learnable denoise using sEMG intrinsic pattern information and sliding-window attention. We propose a Short Term Enhancement Module(STEM) which can be easily integrated with various models. STEM offers several benefits: 1) Learnable denoise, enabling noise reduction without manual data augmentation; 2) Scalability, adaptable to various models; and 3) Cost-effectiveness, achieving short-term enhancement through minimal weight-sharing in an efficient attention mechanism. In particular, we incorporate STEM into a transformer, creating the Short Term Enhanced Transformer (STET). Compared with best-competing approaches, the impact of noise on STET is reduced by more than 20 both classification and regression datasets and demonstrate that STEM generalizes across different gesture recognition tasks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要