Square-planar Tetranuclear Cluster-based Alkaline Earth Metal-organic Frameworks with Enhanced Proton Conductivity.

Hui-Pu Wang,Jin-Cheng Liu,Shu-Fan Li, Ya-Ru Meng,Gen Zhang,Jian Su

Chemistry, an Asian journal(2024)

引用 0|浏览0
暂无评分
摘要
Alkaline earth (AE) metal complexes have garnered significant interest in various functional fields due to their nontoxicity, low density, and low cost. However, there is a lack of systematic investigation into the structural characteristics and physical properties of AE-metal-organic frameworks (MOFs). In this research, we synthesized isostructural MOFs consisting of AE4(μ4-Cl) clusters bridged by benzo-(1,2;3,4;5,6)-tris(thiophene-2'-carboxylic acid) (BTTC3-) ligands. The resulting structure forms a truncated octahedral cage denoted as [AE4(m4-Cl)]6(BTTC)8, which further linked to a porous three-dimensional framework. Among the investigated AE ions (Ca, Sr, and Ba), the Ca4-MOF demonstrated good chemical stability in water compared to Sr4-MOF and Ba4-MOF. The N2 adsorption and solid-state UV-vis-NIR absorption behaviors were evaluated for all AE4-MOFs, showing similar trends among the different metal ions. Additionally, the proton conduction study revealed that the Ca4-MOF exhibited ultra-high proton conductivity, reaching 3.52 × 10-2 S cm-1 at 343 K and 98% RH. Notably, the introduction of LiCl via guest exchange resulted in an improved proton conduction of up to 6.36 × 10-2 S cm-1 under similar conditions in the modified LiCl@Ca4-MOF. The findings shed light on the regulation of physical properties and proton conductivity of AE-MOFs, providing valuable insights for their potential applications in various fields.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要