Parkinson’s Disease Risk Variant rs9638616 is Non-Specifically Associated with Altered Brain Structure and Function

Thomas Welton, Thomas Wei Jun Teo, Ling Ling Chan,Eng-King Tan,Louis Chew Seng Tan

Journal of Parkinson's Disease(2024)

引用 0|浏览1
暂无评分
摘要
Background: A genome-wide association study (GWAS) variant associated with Parkinson’s disease (PD) risk in Asians, rs9638616, was recently reported, and maps to WBSCR17/GALNT17, which is involved in synaptic transmission and neurite development. Objective: To test the association of the rs9638616 T allele with imaging-derived measures of brain microstructure and function. Methods: We analyzed 3-Tesla MRI and genotyping data from 116 early PD patients (aged 66.8±9.0 years; 39% female; disease duration 1.25±0.71 years) and 57 controls (aged 68.7±7.4 years; 54% female), of Chinese ethnicity. We performed voxelwise analyses for imaging-genetic association of rs9638616 T allele with white matter tract fractional anisotropy (FA), grey matter volume and resting-state network functional connectivity. Results: The rs9638616 T allele was associated with widespread lower white matter FA (t = –1.75, p = 0.042) and lower functional connectivity of the supplementary motor area (SMA) (t = –5.05, p = 0.001), in both PD and control groups. Interaction analysis comparing the association of rs9638616 and FA between PD and controls was non-significant. These imaging-derived phenotypes mediated the association of rs9638616 to digit span (indirect effect: β= –0.21 [–0.42,–0.05], p = 0.031) and motor severity (indirect effect: β= 0.15 [0.04,0.26], p = 0.045). Conclusions: We have shown that a novel GWAS variant which is biologically linked to synaptic transmission is associated with white matter tract and functional connectivity dysfunction in the SMA, supported by changes in clinical motor scores. This provides pathophysiologic clues linking rs9638616 to PD risk and might contribute to future risk stratification models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要