Tracing anthropogenic mercury in soils from Fe-Hg mining/smelting area: isotopic and speciation insights.

Chemosphere(2024)

引用 0|浏览0
暂无评分
摘要
Mercury (Hg) stable isotope ratios supplemented by Hg solid speciation data were determined in soils in a former Fe-Hg mining/smelting area (Jedová hora, Czech Republic, Central Europe). The dominant Hg phase in the studied soils was found to be cinnabar (HgS). A secondary form of soil Hg(II) was represented by Hg weakly and strongly bound to mineral (micro)particles, as revealed by thermo-desorption analysis. These Hg species probably play a key role in local soil Hg processes and biogeochemical cycling. The Hg isotopic data generally showed small differences between HgS (-1.1 to -0.8‰; δ202Hg) and the soil samples (-1.4 to -0.9‰; δ202Hg), as well as limited isotopic variability within the two studied soil profiles. On the other hand, the detected negative δ202Hg shift (∼0.4‰) in organic horizons compared to mineral soils in the highly contaminated profile suggests the presence of secondary post-depositional Hg processes, such as sorption or redox changes. For the less contaminated profile, the observed Hg isotopic variation (∼0.3‰; δ202Hg) in the subsurface mineral soil compared to both overlying and underlying horizons is likely due to cyclic redox reactions associated with Hg isotopic fractionation. We assume that the adsorption of Hg(II) to secondary Fe(III)/Mn(III,IV)-oxides could be of major importance in such cases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要