What role of gravity, turbulence and magnetic fields in high-mass star formation clouds?

Research in Astronomy and Astrophysics(2024)

引用 0|浏览0
暂无评分
摘要
Abstract To explore the potential role of gravity, turbulence and magnetic fields in high- mass star formation in molecular clouds, this study revisits the velocity dispersion–size (σ–L) and density–size (ρ–L) scalings and the associated turbulent energy spectrum using an extensive data sample. The sample includes various hierarchical density structures in high-mass star formation clouds, across scales of 0.01 to 100 pc. We observe σ ∝ L0.26 and ρ ∝ L−1.54 scalings, converging toward a virial equilibrium state. A nearly flat virial parameter–mass (αvir−M) distribution is seen across all density scales, with αvir values centered around unity, suggesting a global equilibrium maintained by the interplay between gravity and turbulence across multiple scales. Our turbulent energy spectrum (E(k)) analysis, based on the σ–L and ρ–L scalings, yields a characteristic E(k) ∝ k−1.52. These findings indicate the potential significance of gravity, turbulence, and possibly magnetic fields all in regulating dynamics of molecular clouds and high-mass star formation therein.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要