Quantum molecular docking with quantum-inspired algorithm

Yunting Li, Xiaopeng Cui,Zhaoping Xiong, Bowen Liu, Bi-Ying Wang, Runqiu Shu,Nan Qiao,Man-Hong Yung

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Molecular docking (MD) is a crucial task in drug design, which predicts the position, orientation, and conformation of the ligand when bound to a target protein. It can be interpreted as a combinatorial optimization problem, where quantum annealing (QA) has shown promising advantage for solving combinatorial optimization. In this work, we propose a novel quantum molecular docking (QMD) approach based on QA-inspired algorithm. We construct two binary encoding methods to efficiently discretize the degrees of freedom with exponentially reduced number of bits and propose a smoothing filter to rescale the rugged objective function. We propose a new quantum-inspired algorithm, hopscotch simulated bifurcation (hSB), showing great advantage in optimizing over extremely rugged energy landscapes. This hSB can be applied to any formulation of objective function under binary variables. An adaptive local continuous search is also introduced for further optimization of the discretized solution from hSB. Concerning the stability of docking, we propose a perturbation detection method to help ranking the candidate poses. We demonstrate our approach on a typical dataset. QMD has shown advantages over the search-based Autodock Vina and the deep-learning DIFFDOCK in both re-docking and self-docking scenarios. These results indicate that quantum-inspired algorithms can be applied to solve practical problems in the drug discovery even before quantum hardware become mature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要