Gas-Triggered Gate-Opening in a Flexible Three-Dimensional Covalent Organic Framework

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2024)

引用 0|浏览7
暂无评分
摘要
The development of novel soft porous crystals (SPCs) that can be transformed from nonporous to porous crystals is significant because of their promising applications in gas storage and separation. Herein, we systematically investigated for the first time the gas-triggered gate-opening behavior of three-dimensional covalent organic frameworks (3D COFs) with flexible building blocks. FCOF-5, a 3D COF containing C-O single bonds in the backbone, exhibits a unique "S-shaped" isotherm for various gases, such as CO2, C2, and C3 hydrocarbons. According to in situ characterization, FCOF-5 undergoes a pressure-induced closed-to-open structural transition due to the rotation of flexible C-O single bonds in the framework. Furthermore, the gated hysteretic sorption property of FCOF-5 can enable its use as an absorbent for the efficient removal of C3H4 from C3H4/C3H6 mixtures. Therefore, 3D COFs synthesized from flexible building blocks represent a new type of SPC with gate-opening characteristics. This study will strongly inspire us to design other 3D COF-based SPCs for interesting applications in the future.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要